Plot chart for Rank of top Method and Frameworks for Data Jobs in Sydney:
1import pandas as pd2import matplotlib.pyplot as plt3from google.colab import files4
5# ---- Upload CSV file ---- #6uploaded = files.upload()7
8# ---- Load dataset ---- #9df = pd.read_csv("frameworks_extraction_checkpoint.csv") # Adjust name if needed10
11# Define column names12city_col = 'location'13frameworks_col = 'extracted_methods_frameworks_str' # <--- Adjust if needed14
15# Drop rows with missing data16df = df.dropna(subset=[city_col, frameworks_col]).copy()17
18# Normalize and split framework strings19df[city_col] = df[city_col].str.lower().str.strip()20df[frameworks_col] = df[frameworks_col].str.lower()21
22# Split framework strings into lists23df['framework_list'] = df[frameworks_col].str.split(',')24
25# Explode the list so each framework has its own row26df_exploded = df.explode('framework_list')27df_exploded['framework_list'] = df_exploded['framework_list'].str.strip()28
29# Filter only Sydney entries (data jobs only)30df_sydney = df_exploded[df_exploded[city_col].str.contains('sydney')]31
32# Count top frameworks33top_n = 1034framework_counts_sydney = df_sydney['framework_list'].value_counts().head(top_n)35
36# Plot horizontal bar chart in pink shade (without value labels)37plt.figure(figsize=(12, 8))38framework_counts_sydney.sort_values().plot(kind='barh', color='#ff66b2', edgecolor='black')39
40# Formatting41plt.title(f'Top {top_n} Frameworks in Data Jobs in Sydney', fontsize=16)42plt.xlabel('Number of Job Listings')43plt.ylabel('Frameworks / Methods')44plt.grid(axis='x', linestyle='--', alpha=0.7)45plt.tight_layout()46plt.show()Plot chart for Rank of top Method and Frameworks for Data Jobs in all cities in Australia:
1# Exercise - Top Frameworks Across All Australian Cities (Pink Shade, Horizontal Bar Chart)2
3import pandas as pd4import matplotlib.pyplot as plt5from google.colab import files6
7# ---- Upload CSV file ---- #8uploaded = files.upload()9
10# ---- Load dataset ---- #11df = pd.read_csv("frameworks_extraction_checkpoint.csv") # Adjust name if needed12
13# Define column names14city_col = 'location'15frameworks_col = 'extracted_methods_frameworks_str' # <--- Adjust if needed16
17# Drop rows with missing data18df = df.dropna(subset=[city_col, frameworks_col]).copy()19
20# Normalize and split framework strings21df[city_col] = df[city_col].str.lower().str.strip()22df[frameworks_col] = df[frameworks_col].str.lower()23
24# Split framework strings into lists25df['framework_list'] = df[frameworks_col].str.split(',')26
27# Explode the list so each framework has its own row28df_exploded = df.explode('framework_list')29df_exploded['framework_list'] = df_exploded['framework_list'].str.strip()30
31# Filter for Australian cities (can add more cities if needed)32australian_cities_keywords = [33 'sydney', 'melbourne', 'brisbane', 'perth', 'adelaide', 'canberra',34 'hobart', 'darwin', 'australia'35]36df_aus = df_exploded[df_exploded[city_col].str.contains('|'.join(australian_cities_keywords))]37
38# Count top frameworks across all Australian cities39top_n = 1040framework_counts_aus = df_aus['framework_list'].value_counts().head(top_n)41
42# Plot horizontal bar chart in pink shade (without value labels)43plt.figure(figsize=(12, 8))44framework_counts_aus.sort_values().plot(kind='barh', color='#ff66b2', edgecolor='black')45
46# Formatting47plt.title(f'Top {top_n} Frameworks in Data Jobs Across Australian Cities', fontsize=16)48plt.xlabel('Number of Job Listings')49plt.ylabel('Frameworks / Methods')50plt.grid(axis='x', linestyle='--', alpha=0.7)51plt.tight_layout()52plt.show()